Weighted Random Sampling (2005; Efraimidis, Spirakis)
نویسندگان
چکیده
The problem of random sampling without replacement (RS) calls for the selection of m distinct random items out of a population of size n. If all items have the same probability to be selected, the problem is known as uniform RS. Uniform random sampling in one pass is discussed in [1, 5, 10]. Reservoir-type uniform sampling algorithms over data streams are discussed in [11]. A parallel uniform random sampling algorithm is given in [9]. In weighted random sampling (WRS) the items are weighted and the probability of each item to be selected is determined by its relative weight. WRS can be defined with the following algorithm D: Algorithm D, a definition of WRS
منابع مشابه
Weighted Sampling Without Replacement from Data Streams
Weighted sampling without replacement has proved to be a very important tool in designing new algorithms. Efraimidis and Spirakis (IPL 2006) presented an algorithm for weighted sampling without replacement from data streams. Their algorithm works under the assumption of precise computations over the interval [0, 1]. Cohen and Kaplan (VLDB 2008) used similar methods for their bottom-k sketches. ...
متن کاملWeighted Random Sampling over Data Streams
In this work, we present a comprehensive treatment of weighted random sampling (WRS) over data streams. More precisely, we examine two natural interpretations of the item weights, describe an existing algorithm for each case ([2,4]), discuss sampling with and without replacement and show adaptations of the algorithms for several WRS problems and evolving data streams.
متن کاملCounting Stable Strategies in Random Evolutionary Games
In this paper we study the notion of the Evolutionary Stable Strategies (ESS) in evolutionary games and we demonstrate their qualitative difference from the Nash Equilibria, by showing that a random evolutionary game has on average exponentially less number of ESS than the number of Nash Equilibria in the underlying symmetric 2-person game with random payoffs.
متن کاملStrong Laws for Weighted Sums of Negative Dependent Random Variables
In this paper, we discuss strong laws for weighted sums of pairwise negatively dependent random variables. The results on i.i.d case of Soo Hak Sung [9] are generalized and extended.
متن کاملEfficient High-Dimensional Importance Sampling
The paper describes a simple, generic and yet highly accurate Efficient Importance Sampling (EIS) Monte Carlo (MC) procedure for the evaluation of high-dimensional numerical integrals. EIS is based upon a sequence of auxiliary weighted regressions which actually are linear under appropriate conditions. It can be used to evaluate likelihood functions and byproducts thereof, such as ML estimators...
متن کامل